Title: | Meta-Analysis for Within-Study and/or Across-Study Biases |
---|---|
Description: | Provides common components (classes, methods, documentation) for packages that conduct meta-analytic corrections and sensitivity analyses for within-study and/or across-study biases in meta-analysis. See the packages 'PublicationBias', 'phacking', and 'multibiasmeta'. These package implement methods described in, respectively: Mathur & VanderWeele (2020) <doi:10.31219/osf.io/s9dp6>; Mathur (2022) <doi:10.31219/osf.io/ezjsx>; Mathur (2022) <doi:10.31219/osf.io/u7vcb>. |
Authors: | Mika Braginsky [aut], Maya Mathur [aut], Peter Solymos [cre, ctb] |
Maintainer: | Peter Solymos <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.1 |
Built: | 2024-11-10 04:30:10 UTC |
Source: | https://github.com/mathurlabstanford/metabias |
A object of class metabias
is the result of fitting one or
more models to a dataset with one row per study being meta-analyzed. These
models are either (1) a meta-analysis with a correction for one or more
within-study or across-study biases, or (2) a sensitivity analysis for
meta-analyses with respect to these biases. Examples of functions that
return such objects include:
PublicationBias::pubbias_meta()
PublicationBias::pubbias_svalue()
phacking::phacking_meta()
multibiasmeta::multibias_meta()
multibiasmeta::multibias_evalue()
metabias( data = data.frame(), values = list(), stats = data.frame(), fits = list() ) new_metabias(x = list()) ## S3 method for class 'metabias' summary(object, ...)
metabias( data = data.frame(), values = list(), stats = data.frame(), fits = list() ) new_metabias(x = list()) ## S3 method for class 'metabias' summary(object, ...)
data |
Dataframe containing data used to fit the model(s), with added columns for any values computed during model fitting. |
values |
List of values of arguments passed to the function. |
stats |
Dataframe of summary statistics from the model fit(s). |
fits |
List of fitted objects (which have a class that depends on the
underlying fitting methods, e.g. |
x |
List with elements "data", "values", "stats", "fits". |
object |
Object of class |
... |
Not used. |
An object of class metabias
, which consists of a list containing
the elements data
, values
, stats
, fits
(corresponding to the
arguments passed).
# example model from robumeta::robu() hier_mod <- robumeta::robu(effectsize ~ binge + followup + sreport + age, data = robumeta::hierdat, studynum = studyid, var.eff.size = var, modelweights = "HIER", small = TRUE) ci <- 0.95 # example set value hier_mb <- metabias(data = robumeta::hierdat, # data passed to model values = list(ci_level = ci), # value used stats = robu_ci(hier_mod, ci_level = ci), # stats from model fits = list("robu" = hier_mod)) # model object hier_mb summary(hier_mb)
# example model from robumeta::robu() hier_mod <- robumeta::robu(effectsize ~ binge + followup + sreport + age, data = robumeta::hierdat, studynum = studyid, var.eff.size = var, modelweights = "HIER", small = TRUE) ci <- 0.95 # example set value hier_mb <- metabias(data = robumeta::hierdat, # data passed to model values = list(ci_level = ci), # value used stats = robu_ci(hier_mod, ci_level = ci), # stats from model fits = list("robu" = hier_mod)) # model object hier_mb summary(hier_mb)
Documentation for params common across metabias packages.
yi |
A vector of point estimates to be meta-analyzed. |
vi |
A vector of estimated variances (i.e., squared standard errors) for the point estimates. |
sei |
A vector of estimated standard errors for the point estimates.
(Only one of |
cluster |
Vector of the same length as the number of rows in the data, indicating which cluster each study should be considered part of (defaults to treating studies as independent; i.e., each study is in its own cluster). |
favor_positive |
|
alpha_select |
Alpha level at which an estimate's probability of being favored by publication bias is assumed to change (i.e., the threshold at which study investigators, journal editors, etc., consider an estimate to be significant). |
ci_level |
Confidence interval level (as proportion) for the corrected
point estimate. (The alpha level for inference on the corrected point
estimate will be calculated from |
small |
Should inference allow for a small meta-analysis? We recommend
always using |
selection_ratio |
Ratio by which publication bias favors affirmative
studies (i.e., studies with p-values less than |
q |
The attenuated value to which to shift the point estimate or CI.
Should be specified on the same scale as |
Add a confidence interval to the reg_table
of a
robumeta::robu object.
robu_ci(robu_fit, ci_level = 0.95)
robu_ci(robu_fit, ci_level = 0.95)
robu_fit |
Object of class robumeta::robu. |
ci_level |
Confidence level to use for the confidence interval (defaults to 0.95). |
A dataframe with the columns estimate
, se
, ci_lower
,
ci_upper
, p_value
.
# example model from robumeta::robu() hier_mod <- robumeta::robu(effectsize ~ binge + followup + sreport + age, data = robumeta::hierdat, studynum = studyid, var.eff.size = var, modelweights = "HIER", small = TRUE) robu_ci(hier_mod)
# example model from robumeta::robu() hier_mod <- robumeta::robu(effectsize ~ binge + followup + sreport + age, data = robumeta::hierdat, studynum = studyid, var.eff.size = var, modelweights = "HIER", small = TRUE) robu_ci(hier_mod)